Understanding trained CNNs by indexing neuron selectivity

نویسندگان

  • Ivet Rafegas
  • María Vanrell
  • Luís A. Alexandre
چکیده

The impressive performance and plasticity of convolutional neural networks to solve different vision problems are shadowed by their black-box nature and its consequent lack of full understanding. To reduce this gap we propose to describe the activity of individual neurons by quantifying their inherent selectivity to specific properties. Our approach is based on the definition of feature selectivity indexes that allow the ranking of neurons according to specific properties. Here we report the results of exploring selectivity indexes for: (a) an image feature (color); and (b) an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer conv4 or class selective neurons such as dog-face neurons in layer conv5, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers at a moment when the size of trained nets is growing and automatic tools to index can be helpful.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Shape Selectivity of Middle Superior Temporal Sulcus Body Patch Neurons

Functional MRI studies in primates have demonstrated cortical regions that are strongly activated by visual images of bodies. The presence of such body patches in macaques allows characterization of the stimulus selectivity of their single neurons. Middle superior temporal sulcus body (MSB) patch neurons showed similar stimulus selectivity for natural, shaded, and textured images compared with ...

متن کامل

Visualizing and Comparing Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have achieved comparable error rates to well-trained human on ILSVRC2014 image classification task. To achieve better performance, the complexity of CNNs is continually increasing with deeper and bigger architectures. Though CNNs achieved promising external classification behavior, understanding of their internal work mechanism is still limited. In this work...

متن کامل

Classification of Brain Tumor by Combination of Pre-Trained VGG16 CNN

In recent years, brain tumors become the leading cause of death in the world. Detection and rapid classification of this tumor are very important and may indicate the likely diagnosis and treatment strategy. In this paper, we propose deep learning techniques based on the combinations of pre-trained VGG-16 CNNs to classify three types of brain tumors (i.e., meningioma, glioma, and pituitary tumo...

متن کامل

Technology Aware Training in Memristive Neuromorphic Systems based on non-ideal Synaptic Crossbars

The advances in the field of machine learning using neuromorphic systems have paved the pathway for extensive research on possibilities of hardware implementations of neural networks. Various memristive technologies such as oxide-based devices, spintronics and phase change materials have been explored to implement the core functional units of neuromorphic systems, namely the synaptic network, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.00382  شماره 

صفحات  -

تاریخ انتشار 2016